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DEVELOPMEW' AND TESTING OF A PROPOSED 

INFRARFD HORIZON SCANNER FOR USE I N  

SPACECRA.FT ATTITUDE DETERMINATION 

By Norman M. Hatcher, Arthur L. Newcomb, Jr., 
and Nelson J. Groom 

Langley Research Center 

SUMMARY 

An a t t i t u d e  sensing horizon scanner f o r  spacecraft  t h a t  de tec ts  the  thermal 
radiat ion discont inui ty  a t  opposite horizons of a planetary body t o  determine 
spacecraft  a t t i t u d e  has been designed. An experimental model, incorporating 
many of t h e  features  of t h e  proposed scanner, has been constructed and used f o r  
t e s t i n g  purposes. 
t h e  proposed scanner could perform as predicted e a r l i e r  i n  a theo re t i ca l  report  
(NASA Technical Note D-1005) on t h e  scanner design. 
instrument-associated e r r o r  of less than 0 .lo, a signal-to-noise r a t i o  t h a t  
would allow it t o  operate at  a l t i t u d e s  of about a mil l ion miles from the  earth, 
a power consumption rate of about 3.5 watts, the a b i l i t y  t o  r e j e c t  s ignals  from 
t h e  sun, and a wide-angle capture capabili ty.  

Results of t e s t s  with the  experimental model indicate  t h a t  

That is, it would have an 

An a l t e rna te  solenoid-type scanning-mirror dr ive  mechanism f o r  t h e  scanner 
has been examined. 
system indica te  tha t  it could be e f fec t ive ly  used t o  fu r the r  increase l ifetime 

Laboratory tes ts  with an experimental model of the dr ive 

while decreasing weight, volume, and power consumption. 

INTRODUCTION 

With t h e  evolution of spacecraft  toward grea te r  refinement of operation 
and longer operational l i fe t imes,  t h e  requirements zpon moon- o r  planet-seeking 
attitude sensors, o r  scanners, as these sensors w i l l  be referred t o  i n  t h i s  
report ,  are becoming more s t r ingent .  For example, reliable operation, accuracy, 
low power consumption, s m a l l  s ize,  low weight, and t h e  a b i l i t y  t o  discriminate 
against  rad ia t ion  sources other  than t h e  desired t a rge t  a re  generally required 
of a l l  scanners, while operational l ifetime of a year o r  more, wide-angle cap- 
t u r e  capabi l i ty ,  or  t h e  a b i l i t y  t o  eas i ly  sense spacecraft  a l t i t u d e  i n  addi t ion 
t o  a t t i t u d e  may be required of some scanners. 

The ex i s t ing  scanners t h a t  contain moving parts seem t o  impose g rea t e r  
physical  demands upon t h e  spacecraft than necessary and, i n  general, f r i c t i o n  
l e v e l s  of t h e i r  scanning mechanisms are so high t h a t  they could only operate 
for shor t  periods of t i m e  i n  space. E f f o r t s  t o  increase operational lifetime 



through the complete elimination of moving pa r t s  have usual ly  resul ted i n  even 
g rea t e r  e lectronic  complexity, degraded accuracy, o r  excessive volume, weight, 
and power consumption. 

It i s  therefore  believed t h a t  a need e x i s t s  f o r  a v e r s a t i l e  scanner that  
imposes re la t ive ly  minor requirements upon the  spacecraft  and one which i s  
nevertheless accurate and simple enough i n  operation and construction t o  be 
r e l i a b l e  and capable of operating f o r  periods of a year or  more i n  space. 
scanner discussed i n  t h i s  report  has been designed with the  goal  of incor- 
porating as many of t he  abovementioned desirable  fea tures  as possible.  Ground- 
based performance t e s t s  on a laboratory tes t  model of t h e  scanner ind ica te  t h a t  
most of these fea tures  can be incorporated i n  a s ingle  instrument. 

. 
The 

The basic  operating pr inciples  of t he  scanner and i t s  op t i ca l  geometry are 
described i n  reference 1. The present report  describes ce r t a in  modifications 
t h a t  have been made t o  t h e  proposed scanner s ince reference 1 w a s  writ ten; it 
explains i n  d e t a i l  t he  scanner e lectronics  which had not been developed at t h e  
time of the e a r l i e r  report; it gives r e su l t s  of several  ground-based performance 
tes ts  tha t  have been conducted on t h e  laboratory tes t  model; and it suggests a 
means of probable fu r the r  improvement t o  the scanner through the  incorporation 
of a unique scanning-mirror dr ive  system. 

PRINCIPLES OF OPERATION 

The scanner makes use of t he  discont inui ty  i n  emitted infrared rad ia t ion  
which ex i s t s  between space and the  lunar  o r  planetary t a r g e t  t o  determine t h e  
d i rec t ion  toward t h e  center of t h e  ta rge t .  It contains four  thermistor infrared 
radiat ion detectors  whose f i e l d s  of view a r e  ro ta ted  i n  two perpendicular planes 
from space across the  horizon, o r  edges, of t h e  planetary body as shown i n  f ig -  
ure  1. The two detector  f i e l d s  of view i n  each plane a r e  ro ta ted  synchronously; 
t h a t  is, a t  any in s t an t  during t h e i r  scan cycle t h e  two f i e l d s  make equal angles 
with the  pr inc ipa l  axis of t h e  scanner. Thus, i f  t he  scanner i s  or iented toward 
t h e  center of the  planetary body, t h e  f i e l d s  of view of t h e  two detectors  i n  
each plane w i l l  cross t h e  planetary horizons simultaneously. 
in f ra red  radiat ion w i l l  cause each de tec tor  t o  produce an output simultaneously 
and these outputs w i l l  be processed by t h e  e lec t ronic  system t o  ind ica te  correct  
a t t i t ude .  However, i f  a pointing e r r o r  ex i s t s ,  as i n  f igure  1, the  f i e l d  of 
view of one detector  w i l l  cross one horizon before t h e  f i e l d  of view of t h e  
second detector i n  t h e  same scanning plane crosses the  opposite horizon. Since 
t h e  scanning r a t e  i s  constant, the  t i m e  d i f ference between crossing opposite 
horizons i n  one scanning plane i s  d i r e c t l y  proportional t o  pointing e r r o r  i n  
t h i s  plane. 
t h e  detectors first de tec ts  t h e  rad ia t ion  discont inui ty .  

The i n f l u x  of 

The d i rec t ion  of pointing e r r o r  i s  determined by noting which of 
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Figure 1.- Attitude determination. 

DISCUSSION OF SCANNER DESIGN 

Optical and Mechanical System 

Figure 2 shows t h e  op t i ca l  system of the scanner and f igure  3 shows the  
assembled configuration. The opt ics  consists of four  germanium lenses, four  
parabolic r e f l e c t o r  segments, and four f la t  mirrors rotated by a slow-speed 
motor mounted above the  opt ics .  ( A n  a l te rna te  mirror dr ive  system i s  described 
i n  appendix A . )  
are caused t o  scan through a rc s  from space across t h e  horizons of t he  planetary 
body. 
b o l i c  r e f l e c t o r  segments which, i n  turn,  r e f l ec t  and converge the  radiat ion upon 
t h e  germanium lenses.  The lenses focus the  rzdiat ion upon thermistor detectors  
a t tached t o  t h e  rear surfaces of t h e  lenses.  Thermistors attached t o  germanium 
lenses  i n  t h i s  manner a r e  ca l led  immersed thermistors and o f f e r  a responsivity 
(voltage output/radiation input)  gain over nonimmersed detectors  of about 3.5 
( re f .  2) .  
wavelengths below 1.8 microns and thus eliminate most of t h e  unwanted d i r e c t  
and r e f l ec t ed  rad ia t ion  from t h e  sun. 

A s  t h e  mirrors are rotated,  t h e  f ields of v i e w  of t h e  detectors  

Incoming radiat ion i s  re f lec ted  from the ro ta t ing  mirrors t o  the  para- 

A l s o ,  t h e  lenses  function as f i l t e r s  f o r  removing radiat ion with 

A s  shown i n  f igure 2 the  two mirrors i n  one plane are m a d e  t o  ro t a t e  90' 
out of phase with the  mirrors i n  t h e  second plane. 
t a i n e d  as they are driven by an intermeshing gear set. 
faced on both s ides  which allows them t o  make two scans per  revolution. 

This phase r e l a t ion  i s  main- 
The f la t  mirrors are 

The 
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Figure 2.- Optical system and mirror drive mechanism. 

scan cycle of the mirrors i n  t h e  two perpendicular planes a r e  therefore  sepa- 
ra ted  by goo of mirror ro ta t ion  o r  1800 of scanning. This arrangement permits 
a compact op t i ca l  system, requires  only one mirror d r ive  motor, and s impl i f ies  
t h e  gearing system. 

In  choosing a mirror dr ive  system f o r  t h e  scanner, the  achievement of low 
f r i c t i o n  and thus long and r e l i a b l e  operating l i f e t imes  has been sought. 
Although cer ta in  bearings w i t h  spec ia l  l ub r i can t s  have been operated continuously 
i n  a hard vacuum at 8000 rpm f o r  over 1 year ( r e f .  3 ) ,  t he  long-term usefulness 
of such bearings i n  space has not ye t  been completely ver i f ied .  
d r ive  system shown i n  f igure  2 uses a low-speed (about 300 rpm) motor t o  r o t a t e  
a s t e e l  h e l i c a l  gear which, i n  turn,  r o t a t e s  p l a s t i c  gears enc i rc l ing  the  f l a t  
mirrors at  a rate of about 60 rpm. 
which were chosen here t o  prevent cold welding, w i l l  not de t e r io ra t e  appreciably 
i n  t h e  space vacuum ( r e f .  4 ) .  
be obtained f o r  t h e  purpose of ro t a t ing  t h e  gears.  Because of t h e  r e l a t i v e l y  

Thus the  mirror 

Most s tud ies  ind ica te  t h a t  p l a s t i c  gears, 

A s u i t a b l e  motor using from 1.3 t o  2.0 watts can 
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slow speeds at  which these parts rotate ,  
t h i s  dr ive system is  expected t o  be 
capable of operating f o r  comparatively 
long times i n  space. Since operational 
l i fe t imes  of several  years w i l l  be 
required f o r  cer ta in  missions, however, 
t h e  poss ib i l i t y  of incorporating a non- 
conventional low-friction dr ive system 
which might permit such l i fe t imes  was 
investigated.  One such system which 
appears promising i s  the  electromag- 
ne t i c  dr ive system described i n  
appendix A. 

The pinion gear dr ive suggested 
i n  reference 1 i s  no longer recommended 
because space l imitat ions within the  
scanner would d i c t a t e  t he  use of a very 
s m a l l  ( s i z e  8) motor which cannot be 
obtained with speeds lower than about 
4200 rpm. 

Mounting 
flange - 

irive w assembly 

Dimensions: 4 112" x 4" dia. 

Figure 3.- Assembled configuration of pro- 
posed scanner. 

Electronics 

The main function of t h e  scanner electronics i s  t o  convert the  opt ica l  
input t o  the  thermistor detectors  t o  an e l e c t r i c a l  output s ignal  which indicates  
t he  d i rec t ion  and magnitude of vehicle pointing e r ror .  The electronics  consists 
bas ica l ly  of t h e  infrared sensing elements, the sensor preamplifiers, the time- 
difference detectors  (TDD), and a conversion c i r cu i t ,  as shown i n  the  block 
diagram of f igu re  4. 
tem i s  shown i n  figure 5 .  
scanner a re  discussed i n  appendix B. Time sharing of t h i s  c i r cu i t ry  by the  
detectors  i n  t h e  two scanning planes could be accomplished by the  switching 
c i r c u i t r y  described i n  reference 1. However, t h i s  time-sharing scheme has been 
abandoned f o r  t h e  sake of r e l i a b i l i t y ,  and c i rcu i t s  i den t i ca l  t o  those shown i n  
f igure 4 w i l l  be required f o r  s ignal  processing i n  the second plane. 

The character of the  signals at  various points i n  the  sys- 
Details of t he  electronics used i n  the  experimental 

Infrared detector  c i rcu i t . -  A change i n  t he  amount of intercepted infrared 
rad ia t ion  produced by scanning across the horizon i s  converted to an e l e c t r i c a l  
s igna l  i n  the  thermistor detector bridge which contains opt ica l ly  shielded com- 
pensating elements. These compensators a r e  of the  same material  as the  ac t ive  
sensors and provide compensation f o r  ambient temperature changes. 

Sensor preamplifiers.- Outputs f romthe  sensor bridge c i r c u i t s  a r e  ampl i -  
f i e d  by medium-high gain amplifiers. These amplifiers provide suf f ic ien t  pulse 
outputs t o  t r i g g e r  
so l a r  interference 

The amplif ier  
t h a t  t h e  amplif ier  

t he  TDD c i r cu i t ,  and the  sun-signal-eliminator c i r cu i t  when 
occurs. 

i s  of basic  c lass  A design. 
have a s tab le  gain over the required temperature range (about 

Fundamental requirements are 
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Figure 4.- Horizon scanner e lec t ronics  block diagram. (One ax i s  i s  shown.) Circled l e t -  
t e r s  a r e  points where waveforms of f igure  5 a re  taken. 

-250 C t o  looo C )  and have a response of about k3 dB from 20 t o  10,000 cycles 
per  second. 

Time-difference de tec tor  and rese t  pulse generator.- The time-difference 
detector  (TDD) de tec ts  any difference i n  time between pulses from the  two sensor 
preamplifiers, as when an a t t i t u d e  e r r o r  e x i s t s .  The TDD consis ts  e s sen t i a l ly  
of two s i l icon  controlled switches (SCS) which a re  t r iggered  by t h e  amplified 
detector  outputs as the  horizons a re  crossed. The SCS's are connected so  t h a t  
t h e i r  outputs subtract .  
wave pulse of uniform height and of width equal t o  the  t i m e  d i f ference between 
crossing opposite s ides  of t h e  horizon i s  produced. 
a t t i t u d e  e r ro r  pulse. The d i rec t ion  of pointing e r r o r  i s  determined by noting 
which of t h e  two detectors  f i rs t  in t e rcep t s  a horizon. The pulse can be in t e -  
grated t o  provide a dc l e v e l  or mult ipl ied i n  width t o  accommodate a var ie ty  of 
spacecraft control systems. 

Since t h e  SCS outputs are of equal magnitude, a square- 

This, then, i s  t h e  bas ic  

The TDD i s  made t o  be monostable by a reset pulse generated at  the  begin- 
ning o f t h e  ac t ive  portion of t he  scan cycle, o r  t h a t  port ion during which t h e  
c i r cu i t ry  i s  sens i t ive  t o  rad ia t ion  inputs .  
of sufficient magnitude and time durat ion t o  c l ea r  t h e  TDD c i r c u i t r y  of con- 
duction currents.  

This r e s e t  pulse i s  negative and 

The TDD reset pulse i s  generated by a magnetoresistive element which i s  
appropriately placed i n  t h e  scanner head t o  produce an output when a magnet of 
high f lux  density, attached t o  one of t h e  scanning mirrors, passes by it. By 

. 
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Figure 5. - Synchrogram of circuit waveforms. 

adjus t ing  t h e  pos i t ion  of the  magnetoresistive element, t he  ac t ive  port ion of 
t h e  scan a r c  can be made t o  begin when the  detector f i e l d s  of view a re  a t  any 
desired angular posi t ion below about 30° above horizontal ,  w i t h  respect t o  t h e  
scanner. 
horizon crossing occurs. Signals t h a t  are subsequent t o  the horizon crossover 
s igna l  are not processed. 
terminated a t  some prescribed t i m e ,  but rather at  t h e  t i m e  the  T'DD i s  t r iggered  
on upon crossing a planetary horizon. 

The c i r c u i t r y  then remains sensi t ive t o  any rad ia t ion  input u n t i l  

Thus the  ac t ive  portion of t h e  scan cycle i s  not 

The magnetoresistive element w a s  chosen f o r  i t s  r e l a t i v e  in sens i t i v i ty  t o  
extraneous magnetic f i e l d s .  The inductive pickup, proposed i n  reference 1, w a s  
found t o  be sens i t i ve  t o  both the  motor f i e l d  and other  nearby magnetic dis-  
turbances. Since the  magnetoresistive element has almost no inductance and is  
a low-impedance device (5000 Q) it w i l l  only respond t o  extremely intense mag- 
n e t i c  f ields such as t h e  f i e l d  produced by an Alnico 5 magnet attached t o  a 
scanning mirror. 

Conversion c i rcu i t ry . -  The output from the time-difference detector  cannot 
be used d i r e c t l y  because at  small pointing-error angles where accurate a t t i t u d e  

7 



information i s  most desirous and control  most c r i t i c a l ,  t he  pulse i s  vexy 
narrow. 
width of only lmi l l i s econd .  
somehow t o  m a k e  it usable with typ ica l  control systems. Two conversion c i r -  
c u i t s  were invest igated f o r  t h i s  purpose - an analog and a pulse system. 

For example, a pointing-error angle of 0 . 2 O  corresponds t o  a pulse 
Therefore, it i s  necessary t o  modify t h i s  pulse 

The analog concept converts the  a t t i t u d e  e r r o r  pulse from the  TDD t o  a 

The analog c i r c u i t  ( i n t eg ra to r )  used i n  t h e  
dc voltage which has a magnitude indicat ive of t h e  pulse width and a po la r i ty  
t h e  same as t h a t  of t h e  pulse. 
experimental scanner consis ts  of two capacitors, C 1  and C 2 ,  which are a l t e r -  
nately charged and read. While one capacitor i s  being charged, t he  other  i s  
being read through a high input-impedance c i r c u i t .  
then be fed t o  a control system as shown i n  f igure  6 through a passive c i r c u i t  
lead network ( r e f .  5 ) .  
sary vehicular rate detection f o r  the  pa r t i cu la r  control  system used. If t h e  
analog output voltage of t he  scanner decreases a t  a r a t e  f a s t e r  than the  d is -  
charge rate  of t h e  capacitor, t h e  voltage t o  t h e  control  c i r c u i t  reverses polar- 
i t y ,  thereby actuating the opposite vehicular torquing device. System damping 
i s  controlled by varying the  RC product of t h i s  c i r c u i t .  

The dc output voltage can 

This c i r c u i t  i s  designed so  t h a t  it provides the  neces- 

This c i r c u i t  provides fast reaction t i m e  with an output which i s  updated 
every cycle and accurate t o  the  most recent e r r o r  pulse.  This capabi l i ty  makes 
it possible t o  use the  output as a r a t e  s igna l  s ince t h e  change i n  output vol t -  
age i s  as close t o  vehicular rate as the  scan r a t e  allows. The sa tura t ion  
angle (vehicular e r ro r  angle where maximum l i n e a r  output i s  reached) can be s e t  
at  any desired point up t o  about 600 pointing e r ror .  
have shown t h a t  a compatible sa tura t ion  angle can probably be chosen t o  s a t i s f y  
both capture and hold requirements. Operation of t h e  scanner i s  such t h a t  maxi- 
mum e r ror  indicat ion i n  one scanning plane i s  given i n  t h e  proper d i rec t ion  even 
though only one sensor i n  t h i s  plane i s  able  t o  "see" the  t a rge t  source. 

Laboratory experiments 

The pulse concept uses a pulse-width mul t ip l ie r  which mult ipl ies  t he  TDD 
pulse width by a f ixed f ac to r  t h a t  can be adjusted from approximately 5 t o  50. 
This pulse can then be fed d i r e c t l y  t o  t h e  control  torquers a f t e r  proper power 
amplification. 

Nonpol a r i  zed 

I I 
17iL I n 

Scanner 
analog 
output 

I 

O I  
Power 
switch 

I 
I 
I ' Rate I D i f f e r e n t i a l  

I I compensator 

I 
I c i r c u i t  
I 
I I 
I I 

amp 1 if  i e r  

Figure 6.- Block diagram of t y p i c a l  control  system f o r  u t i l i z i n g  
scanner analog output.  
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If t h e  TDD pulse i s  m a d e  usable by a maximum-effort control  system through 
t h e  u t i l i z a t i o n  of t h e  pulse-width multiplier,  then a pulse-width modulation 
control  system i s  the  end product and t h i s  i s  accomplished without the compli- 
cated conversion c i r c u i t r y  normally used. The advantages of t h i s  pulse system 
over t h e  analog system would be reduced l i m i t  cycle ac t iv i ty ,  reduced fuel con- 
sumption, and the  elimination of dc d i f f e ren t i a l  amplif iers  i n  the  control sys- 
tem proper ( f ig .  6).  

If an external  source of rate information i s  supplied, t h i s  system could 
a l s o  have t h e  important advantage of being extremely simple. 

Rejection of unwanted signals.- A signif icant  problem area  t o  be considered 
i n  horizon-scanner design i s  t h a t  of discriminating against  s ignals  produced by 
sources other  than t h e  t a rge t  source. 
could at  times in t e r f e re  with riomai operation. 
veniently re jected by adjust ing t h e  t r iggering threshold of t h e  electronics  t o  
operate only on t h e  stronger earth-horizon radiat ion discont inui ty .  
s igna l  can a l so  be normally dea l t  with since it i s  many t i m e s  that of t h e  ear th .  

For an ear th  scanner t h e  sun and moon 
"he moon s igna l  can be con- 

The sun 

Detection of the  stronger sun s igna l  can be accomplished by using zener 
diodes which allow almost no conduction u n t i l  t h e i r  zener voltage i s  exceeded. 
If t h i s  voltage i s  exceeded, as occurs when the sun i s  scanned, t he  s ignal  i s  
fed through t h e  zener diode t o  a sun-signal eliminating c i r c u i t  as shown i n  
figure 7(a) which removes t h e  voltage supply t o  t h e  TDD and thus prevents t h e  
TDD from producing an output f o r  a short  time. 

Input from 
preamplif ier  A 

Sun-signal 
detector  Power 

Gate turnoff switch t o  TDD 

Input from 
preamplif ier  B 

Another method of preventing so la r  interference would be t o  use two scan- 
ners  mounted on t h e  spacecraft so t h a t  t he i r  f i e l d s  of view are separated hori-  
zontal ly .  
by a simple c i r c u i t  as shown i n  f igure 7(b) .  
sun s igna l  by e i t h e r  of t h e  scanners, the  output from the  other scanner i s  
s teered around t h e  averaging c i r cu i t ry  while t he  output of t he  scanner viewing 
t h e  sun i s  disabled. 

The a t t i t u d e  e r ro r  outputs from the two scanners could be averaged 
Upon reception of t h e  stronger 
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Scanner jn 
i output  t o  

c o n t r o l  
sys tem 

0 

0 
Scanner 

R 
n 
U 

I 1 1  I 

(b) Sun-signal elimination using two scanners. 

Figure 7.- Continued. 

This technique o f fe r s  two important byproducts - redundancy and probable 
increased accuracy. I n  the event that  one scanner ceases t o  produce an output, 
through f a i lu re  o r  by command, t he  other  scanner can assume the  e n t i r e  respon- 
s i b i l i t y  of a t t i t u d e  sensing. Accuracy i s  increased s ince the  e f f ec t s  of geo- 
metric oblateness, high-alt i tude clouds, and horizon-temperature inconsistencies 
would tend t o  be averaged out, pa r t i cu la r ly  if the  scanners were positioned on 
t h e  spacecraft s o  t h a t  separation of t h e i r  f i e l d s  of view was maximized ( i . e . ,  
separation by 4'3O). 

The reject ion of earth s ignals  i n  a moon scanner cannot normally be accom- 
plished by signal-amplitude-discrimination means since t h e  rad ia t ion  l e v e l  of 
t h e  ear th  falls  within the  wide range of rad ia t ion  l eve l s  from the  moon. 
ever, the  r e l a t ive ly  s m a l l  subtended angle of the  ear th  at  the  moon makes it 
possible t o  use angle-discriminating methods. 

How- 

One such method f o r  use i n  the  proposed scanner might be t o  modify the 
scanning mirrors so  tha t  the detector  f i e l d s  are s p l i t  and separated both hori-  
zontally and ve r t i ca l ly .  Horizontal separation would be by a su f f i c i en t  amount 
t o  prevent scanning across the earth by more than one component of t he  f i e l d  
during any one scan. I n  opera- 
t ion ,  the f irst  output from the  de tec tor  would m a k e  t h e  c i r c u i t r y  sens i t ive  t o  
a subsequent output by the  c i r c u i t r y  modifications shown i n  f igure  7( c ) .  

Vert ical  separation would be perhaps 3' o r  4'. 

A somewhat similar earth-discriminating technique would use four  addi- 
t i o n a l  detectors f o r  producing the  addi t iona l  f ields of view without op t i ca l  
modifications. Since, i n  t h i s  case, t he  two de tec tors  viewing each side of 
each scanning plane would have t o  be s l i g h t l y  o f f s e t  from the  foca l  points  of 
t he  parabolic r e f l ec to r  segments, it is  doubtful t h a t  thermistor immersion 
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techniques would be used. 
for the ‘incorporation of this scheme. 

Figure 7( d) shows circuitry modification necessary 

- 
multi- 

vibrator 
Input 
from 
sensor - 

- 

Inverter 
pu l ser  multi- 

Input from sensor mrH-b v ibrator  

bridpe Sensor 
output 

preamplifier 

To TDD 

4 

- 
To TDD 

input - 

Preamplifier 
output 

Inverter 
pc!ser 

One-s ho t 
output 

AND gate 
output 

(c) False-signal elimination using s p l i t  field of view ( s p l i t  
mirror). 

Figure 7.- Continued. 

I h e -  I 

bridge 

Preamplif ier  
output 

One-shot 
D i i i P U i  

AND Fate 
output 

(d) False-signal elimination using s p l i t  field of view (dual 
sensors). 

Figure 7. - Continued . 
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A method of grea t ly  reducing t h e  probabi l i ty  of interference from a l l  
extraneous radiat ion sources would be t o  l i m i t  t he  beginning of t he  sens i t ive  
port ion of t h e  scan a r c  t o  a point j u s t  above t h e  horizon. This operation can 
be done electronical ly  after or ientat ion i s  accomplished by delaying t h e  reset 
pulse.  The output from an a l t i t u d e  c i r c u i t  would be used t o  compute t h e  proper 
delay necessary. A block diagram of t h i s  c i r c u i t  i s  shown i n  f igure  7(e).  

Reset 
pulse  

TDD outputs 
t o  a l t i t u d e  

computer 

TDD output 

Altitude 
computer 
output 

(one-shot control )  

One-shot 
output 

(grounding 
v o l t  age) 

Grounding 

Reset 
generator 

Alt i tude  
computer 

( integrator)  

voltage - 
vel cage control led  

one-shot 
multivibrator 

Control ' vol tage  

0 
Alt i tude  computer operates on the f i r s t  TDD 
output t o  terminate 

0 

t -Active port ion of scan begins 

TDD input grounded during t h i s  period 

( e )  False-signal elimination using r e s t r i c t e d  f i e l d  of view. 

Figure 7.- Concluded. 
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Capture Capability 

A quant i ta t ive estimate of the a b i l i t y  of t he  scanner t o  capture a plane- 
t a r y  ta rge t  cannot be made here since capture would be intimately t i e d  i n  with 
the  spacecraft configuration, iner t ia ,  tumble, and r o l l  (about the pr incipal  
ax is  of the scanner), and the torque character is t ics  of the  control system. 
However, the  re la t ive ly  slow sampling rate of the  scanner of about 2 samples 
per second (as compared with 30 o r  more samples per second f o r  most other scan- 
ners)  indicates  t ha t  vehicular r a t e s  of no more than perhaps 20 or  30 r p m  could 
be tolerated.  
far lower sampling ra tes  than t h i s  w i l l  be required, par t icu lar ly  about the  r o l l  
ax is  during capture since a t  appreciable error angles, r o l l  about the  pr incipal  
axis of t he  scanner w i l l  produce a sinusoidal output from each channel. 

If the  output of the scanner i s  t o  be used f o r  r a t e  indication, 

The m a x i m u m  e r ror  angle from which an accilrate a t t i t u d e  e r r c r  s igna l  is  
assured is  the  field-of-view angle above the  scanner's horizontal  a t  which t h e  
rese t  s ignal  i s  made t o  occur (300 maximum) plus the  horizon-depression angle. 
However, i f  t he  opt ics  are coated t o  accept a broad spec t ra l  bandpass, radia- 
t i o n  discont inui t ies  over t he  surface of t he  radiating source of most planetary 
bodies may be expected t o  t r i gge r  the electronics and thus provide usable, 
though inaccurate, e r ro r  signals.  

Alti tude Determination 

The s igna l  processing of t he  scanner i s  of such a nature tha t  a l t i t u d e  can 
readi ly  be determined from signals i n  the c i rcu i t ry .  For example, the  average 
time between the  generation of a reset  signal and the two horizon crossover 

s ignals  tl), as  shown i n  f igure 1, i s  proportional t o  ( t 2  - tl) + (t3 - 
2 

a l t i tude .  

An analog a l t i t u d e  s ignal  could eas i ly  be produced by the use of an inte-  
grat ion c i r c u i t  similar t o  t h a t  used f o r  converting the  att i tude-error-pulse 
output from t h e  scanner t o  an analog output. 
input pulse from one s ide of the  TDD t o  ground. 
ex i s t  f o r  the  portion of t he  scan cycle during which the  TDD i s  not conducting, 
o r  from the  time the  TDD is  reset  at the  beginning of the  scan cycle u n t i l  
horizon crossover occurs. 

The integrator  would take i t s  
Thus the  input pulse would 

Environmental Considerations 

Al l  c i r c u i t s  used i n  the  scanner with the exception of t he  sensor output 
amplifiers and the  rese t  generator a re  inherently s tab le  dc switching c i r c u i t s  
and require no special  temperature compensation. Slight modifications i n  the  
amplifier c i r c u i t s  may be necessary t o  extend the  operating temperature range 
beyond present values of about Oo C t o  TO0 C. 
"Electronic Noise. ' I )  

(See the  section en t i t l ed  



By employing conventional miniaturization techniques ( tha t  is, the  incorpo- 
r a t ion  of printed circui ts ,  miniature case t rans is tors  and SCS's, tantalum 
capacitors, miniature m e t a l  f i lm resis tors ,  e t c .  ), t he  en t i r e  e lectronics  com- 
plement, including power regulation devices, can eas i ly  be made t o  conform t o  
t h e  estimated scanner volume of 60 cubic inches. 
employed if volume, weight, and/or redundancy requirements so  d ic ta te .  

Microminiaturization could be 

Radiation damage t o  t h e  scanner electronics should not be a serious problem. 
The main concern i n  t h i s  area was possible damage t o  the  t h e m i s t o r  detectors.  
However, no special  precautions against radiation damage would l i ke ly  be neces- 
sary since unpublished resu l t s  of thermistor radiation tests a t  inner Van Allen 
b e l t  levels  performed by General Elec t r ic  showed no s ignif icant  changes i n  
thermistor character is t ics .  

PERFORMANCE TESTS 

Scanner Test Model 

I n  order t o  evaluate the  performance of t he  basic scanner design and a l so  
t o  a i d  i n  the  design and development of the scanner electronics,  a t e s t  model 
of t h e  scanner was constructed. The tes t  model uses a mirror drive system tha t  
i s  similar t o  the  one shown i n  f igures  2 and 3 except tha t  it uses a 3000 rpm, 
400 cycle motor mounted below the  opt ics  t o  ro ta te  t he  mirrors a t  a r a t e  of 
about 1 revolution per  second. Figure 8 shows a picture  of the assembled tes t  
model; an exploded view i s  shown i n  f igure 9.  Since operation of the scanner 
i n  t h e  two a t t i t ude  sensing planes i s  ident ical ,  the  tes t  model was f i t t ed  with 
only two detectors and electronics necessary f o r  processing the  detector out- 
put i n  o n l y  one plane. 

The framework f o r  mounting the  various optical ,  electronic,  and mechanical 

The 
components w a s  machined from aluminum al loy.  
i t s  separation l i n e  lying i n  the  plane of t h e  four rotat ing mirror shafts.  
worm drive gear i s  machined from stainless steel  and the worm gears, which 

encircle  t he  scanning mirrors, are 
machined from t e f lon  f o r  low-friction 
operation. The two germanium lens- 
immersed thermistor bolometers a re  
0.15 mm wide by 0.6 mm long. These 
dimensions, together with the  &/1 
parabolic re f lec tor  segments, give the  
detectors  a f i e l d  of view of approxi- 
mately 1.50 i n  t he  scanning plane by 6' 
horizontally.  The detector  t i m e  con- 
s t an t s  are 1.5 m s  and 1.7 m s .  The ger- 
manium lenses are an t i re f lec t ion  coated 
f o r  m a x i m u m  transmission a t  15 microns 
and have 0.14-inch rad i i .  

This frame i s  i n  two pa r t s  with 

L-60-6509 
Figure 8.- Scanner test model. 
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The flat  rotat ing mirrors are ceramic 
with t h e i r  shaf t s  machined from the  mirror 
blanks. Their dimensions are  0.125 inch 
by 1.5 inches by 1.5 inches and t h e i r  - re f lec t ing  surfaces are  vacuum-deposited 
aluminum. 
bo l i c  re f lec tor  segments a re  cut from 
pyrex parabolic mirrors and a l so  have 
vacuum-deposited aluminum surfaces. For 
easy access, t he  electronic subcircuits 
are breadboard versions and use standard- 
s i ze  r e l a t ive ly  high-noise germanium t r a n -  
s i s to r s .  However, a l l  semiconductors i n  
any f l i g h t  version of the  scanner would be 
high-quality low-noise s i l i con  devices. 
Total  weight of the  laboratory t e s t  ver- 
sion, including a l l  components f o r  two- 
ax is  operation except t h e  electronics, i s  
25 02. Miniaturized two-axis electronics 
would add about 8 oz. 

The 1-inch by 1.5-inches para- 

The tes t  model i s  crude re la t ive  t o  
a f l i g h t  version and thus does not repre- 
sent e i t h e r  t h e  potent ia l  accuracy of the 
scanner o r  i t s  minimum power consumption 
rate. For example, gear backlash i s  as 
much as 0.004 inch, which i s  equivalent 
t o  a scan-angle deviation of 0.6~. 
excessive backlash w a s  found t o  be neces- 
sary i n  the  tes t  model t o  avoid gear 
binding, but could be grea t ly  reduced i n  
a f l i g h t  version by using a different,  
more eas i ly  machined p l a s t i c  f o r  t h e  worm 
gears. Even though some backlash would 
be necessary i n  the  scanner, it should 
not contribute substant ia l ly  t o  a t t i t ude  
sensing e r ro r  since the  gear driving 
forces are always i n  the  same direction. 

This 

L-60-65u. 1 
Figure 9.- Bploded view of scanner 

test model. 

Additional a t t i t ude  sensing e r rors  a re  produced by imperfections i n  the  
op t i ca l  components and nonexact placement of t he  detectors at  the  focal  points 
of t he  parabolic re f lec tor  segments. 
p a r a l l e l  surfaces on a t  l e a s t  one of the doubly faced f la t  scanning mirrors 
and unequal r e f l e c t i v i t y  values of these mirrors. Because of these opt ica l  
imperfections, a l te rna te  pulse outputs from the detectors are sh i f ted  by a 
time-measured duration t h a t  i s  equivalent t o  about 0.1'. 
i s  "zeroed in'' on a radiating ta rge t  i t s  output w i l l  a l t e rna te ly  be sh i f ted  by 
an mount equal t o  a pointing e r ror  of 0.05' on both sides of zero. It i s  
believed t h a t  t h i s  e r ro r  can be nearly eliminated i n  any subsequent model. 
For t h i s  reason and a l so  because it would have been v i r tua l ly  impossible t o  
read consecutive output e r ro r  signals accurately from the  t e s t  model on the  

The optical  imperfections consist  of non- 

Thus i f  t he  scanner 

A 



oscilloscope, accuracy measurements were made by using a l t e rna te  outpU;t e r ro r  
s ignals .  

A source of e r ro r  w h i c h  ex i s t s  i n  the  t e s t  model, but w h i c h  need not e x i s t  
i n  any subsequent model, resul ted from having one of t he  detectors  repaired. 
I n  repairing the detector  i t s  housing had t o  be modified which required a s m a l l  

16 

(a) Zero p o i n t i n g  error  

(b )  +30 minutes pointinR error 

( c )  -30 minutes p o i n t i n p  e r r o r  

Figure 10.- Electronics operating waveforms. 



displacement of t he  detector  from the  focal  point of i t s  associated parabolic 
reflecto; segment. 
on it t o  be fuzzy. 
noise i n  one of t he  two thermistor bolometer bridges. 
resul ted from mishandling, averaged about 5 percent of the s igna l  produced by 
the  simulated planetary horizon and can be seen i n  the output of preamplifier B 
i n  figure 10. 

This displacement, i n  turn, caused the  radiat ion focused 
S t i l l  another source of e r ror  i n  the  t e s t  model was random 

"his noise, which 

When th i s  noise was superimposed upon the  horizon signal, the  

Preamplifier "A" Sensor "A" 

2Vlcm; lomslcm 

Preamplifier "B" Sensor "B" 

TDD output 
2OVIcm; l h s l c m  

(d) +5.7 degrees pointing error 

Preamplifier "A" Sensor "A" 

2Vlcm; lomslcm 

Preamplifier "B" Sensor "B" 

TDD output 
2OVlcm; lOmslcm 

(e)  -5 .8  degrees pointing error 

( f )  Integrator wlforms 

Mu1 t i v i  bra t o  r l O V /  cm 

Voltage c1 * 5vlcm 

0.2 seclcm 

Voltage C p  = 5Vlcm 

Figure 10.- Concluded. 



SCS's i n  t h i s  c i r cu i t  were caused t o  switch on a t  s l i gh t ly  d i f fe ren t  times as 
the  thermistor f i e l d s  of view scanned across the  ta rge t  edge and produckd a 
false error indication. It should be noted tha t  since f igures  lO(a) t o  1 0 ( f )  
a re  composite nonsimultaneous photographs of the preamplifier and the  TDD out- 
puts, the  photographs do not show TDD t r iggering leve ls .  (Triggering was set 
t o  occur a t  approximately 25 percent of f u l l  amplifier output.) 

Test Instrumentation 

Accuracy tests were conducted with the scanner mounted on the  stand shown 
i n  f i m r e  ll. This stand w a s  f i t t e d  with a vernier tilt adjustment and a 
pointer and scale w i t h  which tilt angles could be read t o  an accuracy 
0.01O. 

e l ,  l i n e  of sight at  bepinning Walls coated with 
f l a t  black p a i n t  of scan arc  

_-' 
-* Test stand 

- Horizon scanner 
60 i n .  ahove f loo r  

Scan arc 

simulated h o r i z o n  

Figure 11.- Setup used i n  s t a t i c  performance tests.  

of about 

Capture-rate t e s t s  were performed with the  scanner mounted on the  Single- 
degree-of-freedom air-bearing-supported platform shown i n  f igure 12. 

For all accuracy t e s t s  t he  planetary horizons were simulated by a heated 
panel on each side of the scanner. 
duce the  same radiation power discont inui ty  a t  the  detectors  that would be 
expected from a 220' K blackbody source, o r  approximately 2 3 O  C warmer than 
background temperature. 
recorded. 
mount of Optical aberration was produced. 
be negligible i n  space. 

The panel temperature was adjusted t o  pro- 

Panel temperature was monitored by thermocouples and 

This aberrat ion would, of course, 
Because the  panels were only about 16 feet from the  scanner, a s m a l l  

I n  order t o  t e s t  the  compatibility of t he  scanner w i t h  a typ ica l  control 
system, the t e s t  model was mounted on the  t e s t  platform and i t s  analog output 
w a s  integrated in to  the control system as shown i n  f igure  6. The control system 
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i s  described i n  d e t a i l  i n  reference 6. 
The contyol amplifiers actuated appro- 
p r i a t e  solenoid reaction j e t s  i n  
response t o  the  r a t e  c i r cu i t  output. 

6 -  

4 -  

2 -  

0 

-2 

-4 

Attitude Sensing Accuracy 

- 

- 

Attitude-sensing-accuracy t e s t s  

I n  a l l  
were conducted w i t h  the  scanner mounted 
on the  t e s t  stand ( f i g .  ll). 
these tests zero pointing e r ro r  w a s  
taken as the point where the  a t t i t u d e  
e r r o r  indications of the  scanner were 
centered about zero output. It was 
found t h a t  a f t e r  the scanner output was 
centered, pulse outputs would not s h i f t  
by more than fO.lO. Linearity of the  
pulse output w a s  found t o  be within 
9 percent throughout the  a t t i tude-  
s ens i t i v i ty  range of t he  scanner. 
then, i s  the  instrument-associated 
a t t i t u d e  sensing e r ro r  of t he  experi- 
mental scanner and can be la rge ly  
a t t r i bu ted  t o  improper handling and 
construction defects  previously dis-  
cussed. Figure l 3 ( a )  shows the  
pointing e r ro r  output from the  time- 
difference detector  as a function of 
ac tua l  e r ror .  The output of the  inte-  
gra tor  as a function of pointing e r ror  
i s  shown i n  f igure  l 3 ( b ) .  

This, 

The inte-  

- 6  d 

L-64 - 73 26 
Figure 12.- Horizon scanner mounted on 

air  bearing. 
- .  . 

gra to r  output has a r ipp le  component t ha t  has fundamental frequency equal t o  
that  of the  scan r a t e .  This ripple,  however, represents l e s s  than 2 percent of 

I 300 r 

-50 -40 -30 -20 -10 0 10 20 30 40 50 

Pointing error, degrees 

( a )  TDD output pulse width as a (b )  Integrator  output voltage as a 
function of equivalent TDD out- function of ac tua l  pointing 

e r r o r .  put e r r o r  pulses. 

Figure 13.- Measured a t t i t u d e  e r m r  output signals as f'unctions of pointing error .  



t he  output voltage from 1' t o  60' e r ro r  r i s ing  t o  about 3.6 percent at  about 
0.lo error.  
pointing e r ror  through the e r ro r  range investigated. Figure 10 shows osc i l -  
loscope photographs of some of the  c i r c u i t  waveforms appearing i n  f igure 5 .  

The accuracy of the  scanner did not decrease appreciably Q i t h  

Due t o  the  opt ica l  design and constant scanning speed of t he  scanner the  
accuracy would be nearly constant throughout i t s  operational a l t i t u d e  range. 
Therefore, accuracy a t  only one simulated a l t i t u d e  was investigated. * 

Altitude Range 

An attempt t o  determine the  m a x i m u m  operational a l t i t u d e  range of the  t e s t  
model scanner w a s  made by decreasing the  subtended angle of a heated disk u n t i l  
t he  scanner ceased t o  produce r e l i ab le  a t t i t u d e  s ignals .  This angle was found 
t o  be equivalent t o  an a l t i t ude  of only about 140,000 miles from the  ear th  due 
t o  the  f ac t  t h a t  the  motor on the  t e s t  model r e s t r i c t ed  the  detector  f i e l d s  of 
view as  they approached the pr incipal  axis of the  scanner. 
tude r e s t r i c t ion  would not ex i s t  i n  any subsequent model i n  which the  motor 
mounted below the opt ics  i n  the experimental scanner would be replaced by a 
motor mounted above the opt ics  o r  by the dr ive system described i n  appendix A.  
Thus, the m a x i m u m  operational a l t i t u d e  would be l imited by e lec t ronic  noise, 
since the  horizon crossover s ignal  would start approaching the e lec t ronic  noise 
l e v e l  as the subtended diameter of the  t a rge t  becomes l e s s  than the width of 
the  f i e l d  of view. 

However, t h i s  alti-' 

With amplifier gain adjusted t o  m a x i m u m  it w a s  found that ,  i n  sp i t e  of 
noise i n  the  damaged detector, the  t e s t  model scanner would operate r e l i ab ly  
with the heated-panel temperature adjusted t o  3' C above t h a t  of the  adjacent 
wall, which w a s  at normal room temperature. This discontinuity corresponds 
approximately t o  t h a t  which would be detected by the  scanner upon crossing the  
horizon of a planetary source radiat ing as a blackbody a t  l25O K. 
corresponds approximately t o  the  discont inui ty  which would be detected by the  
scanner a t  a distance of 660,000 miles from the  ear th  and indicates  tha t  a sub- 
sequent scanner, i n  which electronic  noise i s  reduced by t h e  predicted order 
of magnitude as discussed i n  the  sect ion e n t i t l e d  "Electronic Noise, " would 
operate re l iab ly  a t  a distance of nearly a mill ion miles from t h e  ear th  and 
over 100,000 miles from the shaded s ide  of t h e  moon. 

It a l so  

Minimum operational a l t i t u d e  would be t h a t  at  which the  radiat ion discon- 
t i n u i t y  a t  t he  atmospheric horizon becomes so unclearly defined tha t  the  
detector  outputs a re  insuf f ic ien t  t o  t r i g g e r  the  electronics .  

Performance on A i r  Bearing 

Several tests were performed with the  t e s t  model mounted on t h e  air- 
bearing-supported t e s t  platform, using both t h e  dc output and pulse outputs of 
the  scanner. 
t he  simplicity with which the  scanner output could be e f fec t ive ly  u t i l i z e d  by 
a typ ica l  control system, ( 2 )  t he  time required f o r  the  system t o  capture the  
simulated planetary ta rge t  as a function of d i f f e ren t  j e t  pressures and i n i t i a l  
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e r ro r  argles, and ( 3 )  the  accuracy with which the  scanner wouldhold the  test  
platform a f t e r  capture. 

For t e s t s  using the  analog dc output of the  scanner t h i s  s igna l  was inte-  
grated i n t o  the  a t t i t ude  control system of the t e s t  platform as shown i n  f ig -  
ure 6 and t h e  r a t e  c i r cu i t  mentioned previously was adjusted t o  give c r i t i c a l  
damping and therefore minimum capture t i m e  fo r  each tes t .  
was then disoriented with respect t o  the  simulated planetary t a rge t  and allowed 
t o  capture. 
sures and i n i t i a l  pointing e r ror  a re  shown in  f igure 14.  
27 p s i  w a s  the  m a x i m u m  permitted by the  pressure regulators on the  platform. 
However, the  t rend toward decreased capture time w i t h  increased j e t  pressure 
indicates  t h a t  fur ther  reductions i n  capture time could be obtained. 

' 

The test  platform 

The times required f o r  capture as a function of control j e t  pres- 
A jet  pressure of 

Steady-state pointing accuracy of t he  system after capture, as measured 
by op t i ca l  means, varied from fO.l5O at pressures of from about 2 t o  5 ps i  t o  
about +O.5O a t  27 psi .  This increased er ror  with increasing j e t  pressure w a s  
due primarily t o  the  r e l a t ive ly  slow a t t i t ude  sampling r a t e  of t he  scanner and 
indicates  t h a t  a trade-off between scan ra te  and steady-state accuracy may be 
necessary if extremely fast capture times are required. I f  such a trade-off 
i s  undesirable a two-mode control system employing high- and low-control torques 
with corresponding r a t e  c i r c u i t s  could be used. This system would combine fast 
capture time with a high accuracy capabili ty.  

I n  t e s t s  t o  invest igate  the  probable usefulness of t he  pulse output of the 
scanner f o r  spacecraft a t t i t u d e  control, the pulse output w a s  integrated i n t o  
the  control system as shown i n  f igure 15. 

The full-wave diode bridge produces a posi t ive pulse f o r  the  pulse width 
mul t ip l ie r  regardless of t he  polar i ty  of the input pulse. The NPN t r ans i s to r s  
(4 and Q2) a c t  as switches that ground the input t o  e i the r  j e t  depending upon 
the  s igna l  from the  in tegra tor .  

With a pointing e r ro r  t he  time-difference detector  gives an output which 
i s  fed simultaneously t o  the  pulse-width mult ipl ier  and the  integrator .  
pulse-width mul t ip l ie r  feeds the  driving pulse t o  the  control jets and the 
in tegra tor  switches on the  correct j e t  according t o  the polar i ty  of the  time- 
difference-detector pulse. 
detector  pulse width decreases and the  integrator  output l eve l  decreases. If 
t h e  i e v e i  decreases a t  a r a t e  f a s t e r  than tha t  predetemined by t h e  RC r&e 
c i r cu i t ,  t h e  capacitor causes the  voltage to  be reversed and the  opposite J e t  
is  cut on. 

The 

As pointing error  decreases t h e  time-difference- 

I n  these t e s t s  the  scanner held the  platform t o  within k 2 O  a f t e r  capture 
times which were about equal t o  those for  the dc analog output. 
t i v e l y  l a rge  e r ro r  w a s  the  deadband produced by the  r a t e  switching c i r c u i t  used. 
However, t h i s  c i r cu i t  i s  i n  i t s  i n i t i a l  stages of development and by going t o  
lower l e v e l  switching t r ans i s to r s  and increasing the  maximum in tegra tor  output 
and sa tura t ion  angle, it should be possible t o  reduce the  deadband by nearly 
two orders of magnitude. 

This re la -  
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Figure 15.- Rate system used for pulse-width multiplier. 

Rejection of Unwanted Signals 

Only one of t h e  previously suggested techniques f o r  re jec t ing  s ignals  from 
extraneous radiat ion sources was investigated experimentally. This technique 
was the  one using zener diodes t o  de tec t  the stronger sun s igna l  ( f i g .  7 ( a ) ) .  

With the  t e s t  model mounted on the  air-bearing platform, a hot soldering 
i ron  heat  source used t o  simulate t h e  sun was placed i n t o  the  f i e l d  of view 
at  a pos i t ion  about l5O above one horizon simulator. 
scanner output during operaticn of t h e  sun-signal eliminator, appears i n  f i g -  
ure  14.  
view passes over t h e  sun simulator but t he  output i s  returned immediately when 
the  horizons a re  again crossed. 
when the  soldering i ron  was lowered t o  about 7' above the  horizon. 

A recording, showing the  

A s  can be seen, t he  output goes t o  zero where the  detector  f i e l d  of 

Interference with normal operation occurred 

If t h e  interference angle (angle above the  horizon) i s  t o  be lowered from 
i t s  present value, using t h i s  method of eliminating t h e  sun signal,  a detector  
t h a t  has a f a s t e r  t i m e  constant than the  one employed must be used. 

Power Consmption 

Power consumption of t h e  various components of t h e  scanner w a s  measured 
and i s  shown i n  the  following tab le :  



Sensor bridge . . . . . . . . . . . .  
Sensor preamplifiers . . . . . . . .  
Time-difference detector  . . . . . .  
Sun- signal eliminator: 

Operating . . . . . . . . . . . . .  
Idl ing . . . . . . . . . . . . . .  

Reset generator . . . . . . . . . . .  
Integrator  (analog) : 

Zero er ror  . . . . . . . . . . . .  
400 error  . . . . . . . . . . . . .  

Drive motor (400 cps) . . . . . . . .  
Normal t o t a l  . .  . . . . . . .  
Total a t  40' e r ro r  . . . . . . .  

Voltage, V 

-22.5 and 

+3 0 

+22 

+30 
+30 

+30 

+30 
+30 

85 

Current, mA 

0.3 

10.0 

10.0 

40.0 
0.1 

7.0 

14.0 
30.0 

30.0 

Power, W 

0.013 

0.300 

0.210 

1.200 
0.003 

0.210 

0.420 
0.900 

2.550 

3 706 
5.383 

I n  any subsequent m o d e l  it i s  recommended t h a t  main supply voltages be 
reduced from 30 vo l t s  t o  12 vo l t s  (except t h e  sensor b ias  which w i l l  remain a t  
about t h e  same value) .  
of each electronic  un i t  t o  l e s s  than half t h e  values shown. Two-axis elec- 
t ron ic s  would therefore  consume less t o t a l  power than t h e  single-axis bread- 
board electronics .  L i t t l e  redesign would be necessary f o r  t h i s  change. Power 
requirements would a l so  be reduced by t h e  use of e i t h e r  a more e f f i c i e n t  dr ive 
motor o r  the dr ive system discussed i n  appendix A .  Thus, t he  predicted normal 
t o t a l  power requirement of any subsequent two-axis scanner i s  on the  order of 
3.0 t o  3.5 watts. 

This voltage reduction w i l l  reduce power requirements 

Regulation could be provided by a dc-dc converter which would supply 
detector  b i a s  and the  two separate ( i so l a t ed )  12-volt sources required f o r  t he  
TDD and integrat ion c i r c u i t s .  
and can be chosen t o  be compatible with the  main power source of a pa r t i cu la r  
space vehicle. 

This type of converter i s  commercially avai lable  

Electronic  Noise 

There are only three  possible sources of e lec t ronic  noise i n  t h e  elec- 
t ron ic  c i rcu i t ry  of t he  scanner. The f irst  source i s  Johnson noise i n  t h e  
detectors  themselves and i s  due t o  t h e  presence of impurit ies i n  t h e  semicon- 
ductor m a t e r i a l  used. 
far below the horizon crossover s igna l  l e v e l s .  
unmeasurable without very special ized tes t  equipment. The l / f  noise which 

This source does not c r ea t e  a problem since i t s  l e v e l  i s  
The magnitude of t h i s  noise i s  
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a l s o  or ig ina tes  i n  the  detectors  i s  not a problem since the  detectors  a re  ac  
coupled t o  t h e  electronics .  

The t h i r d  source of noise i s  i n  t he  sensor preamplifiers.  Here t h e  main 
contributors are i n  t h e  t r a n s i s t o r s  employed. Signal l eve l s  from t h e  sensor . bridges, resu l t ing  from crossing typ ica l  radiation d iscont inui t ies  a t  t h e  

I p lanetary horizons, are on the  order of a mi l l ivo l t  or more. With t h i s  much 
s igna l  available,  amplification f ac to r s  of about 2000 are adequate f o r  proc- 
essing. Gains of t h i s  order were eas i ly  m e t  by using comparatively noisy ger- 
manium devices with no detectable  interference.  Measured noise, with grounded 
input, was k5O mi l l i vo l t s  f o r  t he  preamplifier used i n  t h e  experimental model. 
The signal-to-noise r a t i o  of t h i s  amplifier, disregarding source noise, with a 
t y p i c a l  1-mill ivolt  s igna l  produced by the  ear th ' s  horizon and a gain se t t i ng ,  
of 2000 i s  

Signal - 2.000 vo l t s  
Noise 0.050 vo l t  

- = 40, o r  32 dB 

There are many methods which may be employed t o  reduce t h e  noise l e v e l  of t he  
sensor preamplifiers.  The incorporation of low-noise s i l i c o n  devices, t he  use 
of low supply voltage t o  t h e  input stage, and t h e  addi t ion of one o r  more 
stages of gain t o  reduce individual amplification l eve l s  are th ree  methods t h a t  
are recommended. It i s  estimated t h a t  noise can eas i ly  be reduced by an order 
of magnitude by using these methods, thereby increasing the  signal-to-noise 
r a t i o  t o  400 o r  52 a. 

CONCLUDING REMARKS 

A horizon scanner f o r  use i n  determining t h e  a t t i t u d e  of spacecraft  rela- 
t i v e  t o  the moon and planets  has been designed. Although the  scanner has 
moving par ts ,  these pa r t s  operate at re la t ive ly  low speeds and thus would 
probably not create  a serious l ifetime l imit ing f ac to r .  On the  basis of t he  
considerations discussed and performance tests conducted with an experimental 
model of t h e  scanner, it i s  estimated t h a t  the proposed scanner would have t h e  
following cha rac t e r i s t i c s  : 

1. I t s  a t t i t u d e  output s igna ls  could exis t  i n  e i t h e r  o r  both pulse and dc 
analog form which could e a s i l y  be adjusted i n  width and amplitude, respectively,  
t o  meet t h e  requirements of t h e  mission. 

2. It would have a t o t a l  instrument-associated e r r o r  of l e s s  than 0.1'. 
Linear i ty  of t h e  pulse output should be within +1 percent throughout t h e  e r r o r  
s e n s i t i v i t y  range of t h e  scanner. 

3. I ts  operat ional  a l t i t u d e  range could extend t o  nearly 1 mil l ion miles 
from t h e  earth,  and over 100,000 m i l e s  f romthe  shaded s ide  of t h e  moon. 

4. I ts  t o t a l  weight, volume, and power requirements would be approximately 
3 pounds, 60 in.3, and 3.3 watts, respectively. 
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5. Capture of a planetary body could be accomplished from re l a t ive ly  
l a rge  e r ror  angles. 
near c r i t i c a l  damping could only be achieved f o r  low tumble and r o l l  rates. 

If t h e  output of t h e  scanner i s  used f o r  ra te ,  hoTjever, 

An electromagnetic dr ive  system discussed i n  an appendix appears t o  be 
feasible f o r  use i n  the  scanner. 
scanner while a l s o  decreasing i t s  weight, volume, and power consumption. 

This system should extend t h e  l ifetime of t h e  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, V a . ,  May 26, 1965. 



APPENDIX A 

ALTERNATE MIRROR DRIVE SYSTEM 

Although the  mirror dr ive system discussed previously should be capable 
of operating f o r  longer periods of t i m e  i n  space than other scanners having 
moving parts,  t he  poss ib i l i t y  of incorporating a nonconventional low-friction 
dr ive system capable of operating f o r  several years i n  space w a s  investigated. 
An electromagnetic drive system appears promising. 

The electromagnetic dr ive system i s  quite d i f fe ren t  i n  operation from t h a t  
shown i n  f igure  2 although it does not a l t e r  t h e  operating principles of t he  
scanner i n  any way. I n  t h e  electromagnetic drive system t h e  mirrors are osc i l -  
l a t ed  through arcs  of about 60° at a rate of about 4 cps t o  provide scan a rcs  
of about 120°. 
phase. Thus the  scan cycles i n  the  two planes are not staggered as they are i n  
t h e  t e s t  model scanner and i n  the  drive system shown i n  f igure 2. The electro-  
magnetic dr ive system consists basical ly  of a solenoid i n  which the  solenoid 
c o i l  i s  attached t o  the  scanner framework and the  ferrous slug i s  attached t o  
one of t h e  mirrors as shown i n  f igure 16. 
t ionship i s  maintained by a set of gears which a re  attached t o  the  mirrors and 
mesh at the  pr incipal  ax is  of t h e  scanner. 

The scanning mirrors a re  faced only on one side and are  a l l  i n  

The necessary scan-angle phase rela- 

The mirrors have a rest posit ion determined by three  permanent magnets. 
Two magnets are mounted t o  a gear sector and one i s  f ixed t o  the  scanner frame. 
The three  magnets are positioned i n  such a manner t h a t  the  f i e l d s  of the  two 
mirror-mounted magnets oppose the  f i e l d  of the f ixed magnet and thus tend t o  
posi t ion the  mirrors a t  some point between t h e i r  scan-arc l i m i t s .  
solenoid i s  pulsed, t he  ferrous 
slug i s  pulled in to  the  c o i l  and 
t h e  lower, mirror-mounted magnet 
w i l l  be moved closer t o  t h e  
f ixed magnet. Equilibrium of 
t h e  forces  exerted by the  mag- 
net  f i e l d s  i s  now overbalanced 
and a net force i s  exerted on 
t h e  lower mirror-mounted magnet 
opposing t h e  force of t h e  sole- 
noid. When t h e  current through 
t h e  c o i l  i s  stopped, t h e  mirror 
w i l l  be forced hy t h e  opposing 
magnetic fields back through 
t h e  mirror rest posit ion.  The 
upper mirror-mounted magnet w i l l  
now exert a force on t h e  f ixed 
magnet and return the  mirror t o  
a point a t  which t h e  solenoid 
w i l l  a c t  upon it, and so on. By 
varying t h e  width and frequency 
Of t h e  pulses t o  the  solenoid 

When the  

Inputs to 3riv 

Figure 16.- Alternate mirror drive system. 
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APPEXDIX A . 
and t h e  size of the magnets, the  mirrors can be made t o  o s c i l l a t e  at  d i f fe ren t  
frequencies and amplitudes. 

The electronics associated w i t h  t h i s  drive system consis ts  of a special ly  
designed astable  multivibrator i n  which period, on-time, and off-time are  
adjustable. The on-time pulse i s  amplified t o  drive the actuating solenoid. 

Torsion bars o r  flexure pivots might be used i n  place of magnets i n  the 
electromagnetic drive system, although some d i f f i c u l t y  would be encountered i n  
attaching the  tors ion bars t o  the  mirrors i n  such a way t h a t  they could be con- 
tained ent i re ly  within the  scanner. This could be done, however, by having the  
tors ion bars pass through the  mirrors along the  ro ta t iona l  axes of t he  mirrors 
with one end of each bar attached t o  one side of t he  mirror and the  opposite 
end attached t o  the  scanner framework. 

Constancy of mirror ro ta t iona l  veloci ty  throughout a major portion of the  
scan a r c  can be approached by shaping the  driving pulse, using feedback t o  the  
pulse-producing c i r cu i t ry  from a simple auxi l iary r a t e  pickup c o i l  and slug. 

A simple t e s t  model of t he  electromagnetic dr ive system w a s  constructed 
and tes ted.  
chosen t o  roughly equal those of the  mirrors and gearing system of an opera- 
t i o n a l  scanner, were osc i l la ted  at  4 cps through arcs  of about 4 5 O  at  an average 
power-dissipation r a t e  of about 0.8 w a t t  by using magnets t o  oppose solenoid 
forces.  
t h a t  shown i n  f igure 16 where more e f f i c i en t  co i l s  and a much reduced air  gap 
between the c o i l  and the  slugs would be used. 
ment of the magnets the scan can be extended t o  60' or  more. 

In the  t e s t  model ( f i g .  17) the  gears, with moments of i n e r t i a  

Power consumption could undoubtedly be reduced i n  a system such as 

By careful  select ion and place- 

To evaluate the operation of t he  system with tors ion  bars the  magnets were 
removed, torsion bars were attached t o  the  gear shafts of the  electromagnetic- 

drive-system t e s t  mode1,and 
driving- s ignals  were applied t o  
t h e  solenoid as  before. The gears 
were osc i l l a t ed  through arcs  of 
about 60° a t  an average power con- 
sumption r a t e  of about 1 w a t t .  
With both the  magnet and the 
torsion-bar system, it w a s  found 
t h a t  t he  frequency of the  pulses 
applied t o  t h e  solenoid c o i l  was 
not c r i t i c a l  and could be changed 
by a f ac to r  of 2 about the  f r e -  
quency a t  which m a x i m u m  scan a r c  
occurred with a decrease i n  scan 
a r c  of only loo  t o  15'. 

I -- -_- 

La-5373 -1 
Figure 17.- Alternate drive system t e s t  model. 
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APPENDIX B 

DETAILS OF EXPERIMENTAL SCANNER ELECTRONICS 

\ Basic Scanner Electronics 

Figure 18 shows i n  schematic form the basic scanner electronics.  The 
pulses from the  bolometer bridges, a f t e r  suff ic ient  amplication by the  sensor 
preamplifiers, a r e  applied t o  the  TDD gate c i rcu i t s  v i a  the input diodes D1, 
D2, D3, and D4. These diodes assure t h a t  negative-going pulses from the pre- 

amplifiers do not prematurely turn o f f  the SCS’s. 

The rese t  pulse i s  amplified by the Darlington amplifier and used t o  f i r e  
S3 t o  provide a negative-going square-wave pulse with a leading edge of l e s s  
than 2 microseconds. 
and the  posi t ive portion is  shorted by D7. 
t he  sun-signal eliminator f o r  turnoff i n  the event t he  sun i s  i n  such a posi- 
t i o n  t h a t  normal turnoff i s  not affected.  

This square-wave pulse i s  d i f fe ren t ia ted  by C 3  and R 5  
This negative pulse i s  a l s o  fed t o  

The t r iggering thresholds of t h e  TDD inputs a re  about 0.55 vol t  and gain 
controls a r e  provided i n  the preamplifiers fo r  adjusting the switching level .  

Infrare 
sensor 

A 

Variable 

Infrared 
sensor 
B 

Figure 18.- Horizon scanner electronics schematic. 



APPENDIX B * 

Sun-Signal Eliminator 

Sun signals processed by the  preamplifiers a re  of su f f i c i en t  magnitude t o  
exceed the zener voltage of Z 1  and Z2 and a r e  therefore  fed  t o  the  gate  of S4 
(ga te  turnoff SCS). 
thereby removing the  22-volt supply t o  t h e  TDD. 
removed, the TDD S C S ' s  are  simultaneously cut off ,  i f  they had been triggered, 
thereby hs l t ing  my output In  t h i s  ax is  u E t i l t h e  supply voltage i s  returned. 
The TDD i s  therefore  held insens i t ive  t o  a l l  incoming s igna ls  during operation 
of t he  sun-signal-elimination c i rcu i t ry .  The t r a i l i n g  edge of t h e  sun signal,  
being negative due t o  d i f f e ren t i a t ion  i n  the  sensor preamplifiers, cuts  off S4, 
thus returning the  22-volt supply t o  t h e  TDD, allowing normal operation during 
t h e  remainder of t he  scan. 
axis ,  normal operation of t he  axis not viewing the  sun i s  unaffected. 

When S4 f i r e s ,  Q1 and Q2 are biased i n t o  conduction, 
When the  supply voltage i s  

Since one c i r c u i t  of t h i s  type i s  used f o r  each 

C onve r s i on C i r cu i t ry 

Analog c i r cu i t . -  The analog c i r c u i t  f o r  converting the  TDD pulse output t o  
a dc voltage is shown i n  figure 19. I n  t h i s  c i r c u i t  two capacitors C 1  and C2 
are a l t e rna te ly  charged and read. 
other  i s  being read by a high input impedance c i r c u i t .  
and-read process is actuated by t h e  b i s t ab le  mult ivibrator  formed by Q4 and % 

While one capacitor i s  being charged, t he  
The a l t e rna t ing  charge- 

I I 

Figure 19.- Schematic of i n t e g r a t o r  used i n  t e s t  model scanner. 
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which i s  t r iggered by the  t r a i l i n g  edge of the e r ro r  pulse. 
i s  a l t e rha te ly  steered t o  the proper capacitor by t r ans i s to r s  Q7 and €@ which 
a re  biased i n t o  conduction by the  multivibrator. This steering method merely 
shunts the e r ro r  pulse t o  ground of the  capacitor which i s  being read. 
end of each pulse, the  capacitor which is  next t o  be charged i s  unloaded of 
i t s  previous charge by a shunted SCS which is  a l s o  t r iggered by the  
multivibrator.  

The input pulse 

A t  the  

Capacitors C 1  and C2 a re  charged by the constant-current charge c i r c u i t  
formed by QQ, R7, R8, D1, D2, Zlr and Z2. 
r e s i s to r s .  This c i r c u i t  i s  responsible f o r  the  l i n e a r  re la t ionship between 
the  input pulse width and the output voltage. A method f o r  calculating charge 
parameters i s  given i n  f igure 20. This figure a l s o  shows the method f o r  cal- 
culating t h e  m a x i m  output voltage fo r  which essentially l i nea r  operation i s  
obtained. Adjustment of the  saturat ion angle discussed i n  section e n t i t l e d  
"Conversion Circuitry" i s  made with R7 and R 8  ( f i g .  19) .  
more f ixed values of resistance f o r  R7 and R8 could be switched i n  t o  provide 
s teeper  slopes about small e r ror  angles. 

Resistors R and R6 a re  zener b ias  5 

I f  desired, two or  

The diodes D3 and D4 prevent the  capacitors C1 and C2 ( f i g .  19) from dis -  
charging through the  charge c i r cu i t .  
buffer  t o  t h e  TDD and 
sa tura te  when the input 
pulse reaches 1 volt ,  
thereby making the 
in tegra tor  insens i t ive  
t o  supply-voltage varia- Q2 

t ions .  High-impedance 
readout (500 k~1) i s  
provided by through 
the  diodes D 9  and D10 
which a r e  connected i n  
a "greater than, OR" 
configuration. - 

Transistors Q1 and Q3 form a n  impedance 

vc 

d t  

t - 

The analog inte-  
gra tor  consis ts  of 
two of the  previously 
described c i r c u i t s  con- 
nected i n  a differen-  
t i a l  configuration 
employing a ccmmon 
multivibrator.  By rede- 
signing t h i s  multivibra- 
t o r  t o  use diode 
switching f o r  s teer ing 
t h e  input pulse, 
s teer ing  t r a n s i s t o r s  Q7 

C i r c u i t  showin& necessary cfimponents of 
f i b w e  19 for ca lcu la t inL charge 
parameters 

r 

Where C 
C = Capacitance of C1 
i = Ins tan taneous  capac i to r  cu r ren t  

C ( R 8 )  I = Constant capac i to r  cu r ren t  
---- = --- --_-- d V ~  I 

C(R8) - ----- VC 

"1 
dt 

d"C --- 
dt 

Essen t i a l ly  l i n e a r  ope ra t ion  i s  obta ined  when 

'C1 vB+ - 2Vz1 

Figure 20.- Charge parameter calculation. 
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l and % can be eliminated; t h i s  elimination results i n  a t o t a l  saving of four  
t r ans i s to r s  per  axis. 

A fur ther  s implif icat ion could a l so  result i f  a l i n e a r  output with respect 
t o  input pulse width is  not required. This s implif icat ion would eliminate t h e  
constant-current charge path mentioned previously which cons is t s  of a t o t a l  of 
fou r  t r ans i s to r s  and t h e i r  associated components per axis. 

. 

Pulse c i r cu i t . -  The c i r c u i t  diagram f o r  t he  pulse conversion c i r c u i t  i s  
shown i n  f igure  21. The multiplying c i r c u i t  consis ts  of Ql, C, and Q2. Resis- 
t o r  Re serves as the  charge path f o r  C and Q1 and R3 serves as t h e  discharge 
path.  
to,  and Z3 which i s  the  same value as Z2  
i t s  regulated voltage.  

Zener diode Z2 determines the  magnitude of t h e  v o l t w e  t h a t  C i s  charged 
holds Q2 cut off when C i s  charged t o  

With B+ applied t o  t h e  c i r c u i t  and no s igna l  a t  t h e  input, C 1  i s  charged 
t o  t h e  zener voltage of Z2 and a l l  t r a n s i s t o r s  are cut o f f .  
pulse i s  applied t o  t h e  input terminal a t  t i m e  
t o  discharge through R 3  v i a  Ql. 

When a square-wave 

tl, Q1 conducts, and C begins 
When C discharges, Q2 i s  biased i n t o  conduction 

I 
1 
T T I 

I n p u t  
voltu;,e 

I c 

o u t p u t  
voltu,:e 

Figure 21.- Pulse width mult ip l ie r .  
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which increases the voltage crop across load r e s i s t o r  R5. 
amplifies t h i s  increase and switches on tunnel diode TD1 which i n  tu rn  switches 
on @, 

causing C t o  charge again through R2. When C re turns  t o  i t s  regulated voltage, 
t he  forward b i a s  on Q2 i s  removed and conduction ceases. 
Q3 t o  cut off which i n  turn cuts off. Figure 21 shows the  relat ionship 
between the  input pulse, the capacitor voltage, and the output pulse. The 
mult ipl icat ion f ac to r  of the  c i r cu i t  is  

Transistor Q3 

When the  input pulse terminates, at some time t2,  Q1 i s  cut off, 

This sequence causes 

t 3  - tl 
t 2  - tl 

This f ac to r  can be changed by varying Re. 
duration t o  completely discharge C, then the device no longer multiplies the 
pulse by a constant but merely adds a f ixed amount t o  the  pulse as the  width 
increases. 

If the  input pulse i s  of suf f ic ien t  

33 
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